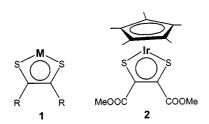
The NMR-Spectroscopic and X-ray Crystal-Structural Characterization of Two Cp*Ir Halfsandwich Complexes Containing the 1,2-Dicarba-*closo*-dodecaborane-1,2-diselenolato Ligand


Max Herberhold,*[a] Guo-Xin Jin,[b] Hong Yan,[a] Wolfgang Milius,[a] and Bernd Wrackmeyer*[a]

Keywords: Iridium / Selenium / Diselenolenes / Carboranes / X-ray crystal structure analysis / NMR spectroscopy

The reaction of $[Cp^*IrCl_2]_2$ with dilithium 1,2-orthocarborane-1,2-diselenolate 3 leads to the green 16-electron diselenolene complex $[Cp^*Ir\{Se_2C_2(B_{10}H_{10})\}]$ (4) which takes up two-electron ligands such as trimethylphosphane to give the 18-electron diselenolate derivative $[Cp^*Ir(PMe_3)-P(PMe_3)]$

 ${\rm Se_2C_2(B_{10}H_{10})}$ (5). The molecular structures of **4** and **5** were determined by X-ray crystal structure analysis. The ⁷⁷Senuclear shielding in **4** is lower by almost 500 ppm relative to that in **5**.

The bonding in metallacyclic 16-electron dithiolene complexes of type 1 is a matter of debate. ^[1] In this context, we have recently reported ^[2] the X-ray crystal structure analysis of the 1,2-bis(methoxycarbonyl)dithiolene complex 2 in which M is the (pentamethylcyclopentadienyl)iridium moiety (Cp*Ir). In order to obtain further structural and spectroscopic information, we have now combined the Cp*Ir half-sandwich fragment with the *ortho*-carboranediselenolate ligand $[H_{10}B_{10}C_2Se_2]^{2-}$ (3). Direct structural evidence is expected to correlate in particular with the ⁷⁷Se-NMR data.

Although complexes containing the *ortho*-carboranedithiolate ligand chelated to Mo, $^{[3]}$ Re, $^{[3]}$ Co, $^{[4]}$ Ni, $^{[4]}$ Pd, $^{[3]}$ Pt, $^{[5]}$ and Au $^{[6]}$ have been prepared starting from the dithiol $H_{10}B_{10}C_2(SH)_2$, the analogous or related diselenolate compounds have not been described. We prepared both *ortho*-carboranedithiolate and -diselenolate complexes from the dilithium dichalcogenates $H_{10}B_{10}C_2(ELi)_2$ [E=S, Se~(3)] which were obtained in situ by insertion of either sulfur or

selenium (1:2) into the dilithiated *ortho*-carborane intermediate (Equation 1).

As shown in Scheme 1, the dilithium o-carboranediselenolate 3 reacts with $[(Cp*IrCl_2)_2]$ to give the green diselenolene complex 4, and with $[Cp*IrCl_2(PMe_3)]$ the yellow diselenolate complex 5. Compound 4 takes up two-electron ligands L such as L = CO, CNtBu, phosphanes and pyridines. However, attempts to remove PMe_3 from 5 using sulfur were not successful.

Scheme 1

The molecular structures of both 4 and 5 in the crystal were determined by X-ray crystal structure analyses (Figures 1 and 2). The molecule of 4 corresponds to point group symmetry C_{2v} with two perpendicular mirror planes. Addition of PMe₃ to form the 18-electron complex 5 leads to

[[]a] Laboratorium für Anorganische Chemie der Universität Bayreuth,

D-95440 Bayreuth, Germany

Fax: (internat.) + 49(0)921/55-2157

E-mail: Max.Herberhold@uni-bayreuth.de

[[]b] Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,

Changchun 130022, P. R. China

 $C_{\rm s}$ symmetry with only one mirror plane left. The iridadise-lenolene heterocycle in 4 (which is coplanar with the centers of both the Cp* ring and the *ortho*-dicarbadodecaborane cluster) is bent in 5 with a dihedral angle at the Se····Se vector of 156.1°. Apparently, the ligand L = PMe₃ destroys the pseudoaromatic IrSe₂C₂ system in 4. This is particularly evident from the fact that on going from 4 to 5, the C(1)–C(2) bond length increases [from 161.2(9) to 165.0(10) pm], the Ir–Se bond lengths grow significantly [from 237.0 (av.) to 247.0 (av.) pm], while the Se–Ir–Se angle decreases [from 93.65(3) to 90.2(1)°]. Compared to 4, the trimethylphosphane adduct 5 is an ordinary diselenolate chelate complex.

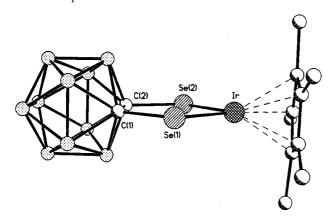


Figure 1. Molecular structure of $[Cp*Ir(Se_2C_2B_{10}H_{10})]$ (4); selected bond lengths [pm] and angles $[^\circ]$: Ir-Se(1) 237.53(9), Ir-Se(2) 236.56(9), Se(1)-C(1) 194.1(7), Se(2)-C(2) 193.7(7), C(1)-C(2) 161.2(9), Ir-Z(Cp*) 179.4; Se(1)-Ir-Se(2) 93.65(3), Ir-Se(1)-C(1) 104.6(2), Ir-Se(2)-C(2) 105.0(2), Se(1)-C(1)-C(2) 118.5(5), Se(2)-C(2)-C(1) 118.3(5); dihedral angle Se(1)IrSe(2)/Se(1)C(1)C(2)Se(2) 180°

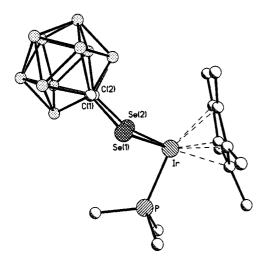


Figure 2. Molecular structure of [Cp*Ir(Se $_2$ C $_2$ B $_{10}$ H $_{10}$)(PMe $_3$)] (5); selected bond lengths [pm] and angles [°]: Ir–Se(1) 247.3(1), Ir–Se(2) 246.6(2), Ir–P 227.3(2), Se(1)–C(1) 194.9(6), Se(2)–C(2) 195.2(6), C(1)–C(2) 165.0(10), Ir–Z(Cp*) 188.7. Se(1)–Ir–Se(2) 90.2(1), Se(1)–Ir–P 89.1(1), Se(2)–Ir–P 89.1(1), Ir–Se(1)–C(1) 103.1(2), Ir–Se(2)–C(1) 103.9(2), Se(1)–C(1)–C(2) 119.0(4), Se(2)–C(2)–C(1) 117.6(4); dihedral angle Se(1)IrSe(2)/Se(1)C(1)C(2)Se(2) 156.1°

The ¹H-, ¹¹B-, ¹³C-, ³¹P-, and ⁷⁷Se-NMR data (Table 1) of **4** and **5** in solution are in complete agreement with their

solid-state structures. In the case of 4, the C_{2v} symmetry requires four 11B-NMR signals in the intensity ratio of 2:4:2:2, as observed in the 180.5-MHz ¹¹B-NMR spectrum, whereas the C_s symmetry of 5 should give rise to seven ^{11}B -NMR signals in the ratio of 1:1:2:2:1:1:2, of which six are observed. The range of the $\delta^{11}B$ -NMR data is similar to that of other 1,2-substituted derivatives of 1,2-C₂B₁₀H₁₂.^[7] There is only one ¹³C(carborane) signal each for 4 and 5, as expected, the one of 4 being shifted by 6.8 ppm to lower field relative to that of 5. The structural changes between 4 and 5 are most strikingly reflected by the ⁷⁷Se-nuclear deshielding of almost 500 ppm in the 16-electron complex 4 relative to the 18-electron complex 5. Such a deshielding is typical of ⁷⁷Se nuclei becoming part of a heteroaromatic system.^[8] This effect can be traced to magnetic field induced mixing of electronic ground and energetically lowlying excited states present in such heterocycles. The complexes 4 and 5 are the first examples to compare the influence of electronic structure on 77Se-nuclear shielding in closely related transition metal diselenolene complexes. A similar comparison has been carried out between titanocene diselenolene metallacycles (also 16-electron complexes) and non-cyclic derivatives. [9] However, in these cases the metallacycles are non-planar and the differences in ⁷⁷Se-nuclear shielding are rather small.

Experimental Section

The starting complexes $[\{Cp^*IrCl_2\}_2]^{[10]}$ and $[Cp^*Ir(PMe_3)Cl_2]^{[11]}$ were prepared according to established procedures; the *ortho*-carborane 1,2- $C_2B_{10}H_{12}$ is commercially available. — NMR measurements: Bruker ARX 250 and DRX 500 spectrometers; chemical shifts are given relative to $CHCl_3/CDCl_3$ ($\delta^1H = 7.24$; $\delta^{13}C = 77.0$), external Et_2O-BF_3 [$\delta^{11}B = 0$ for $\Xi(^{11}B) = 32.083971$ MHz], external 85% aqueous H_3PO_4 [$\delta^{31}P = 0$ for $\Xi(^{31}P) = 40.480747$ MHz], external Me_2Se [$\delta^{77}Se = 0$ for $\Xi(^{77}Se) = 19.071523$ MHz]. — Mass spectra: VARIAN MAT CH7, EI MS (70 eV), direct inlet. — IR spectra: Perkin—Elmer 983 G.

Dilithium 1,2-Dicarba-closo-dodecaborane-1,2-diselenolate (3): A solution of 1,2- $C_2B_{10}H_{12}$ (0.29 g; 2 mmol) in Et₂O (40 mL) was lithiated by addition of 2.75 mL of 1.6 m butyllithium (4.4 mmol) in hexane. Addition of selenium (0.32 g; 4 mmol) gave a yellow solution of $H_{10}B_{10}C_2(SeLi)_2$ (3) in quantitative yield.

Pentamethylcyclopentadienyl-(1,2-dicarba-closo-dodecaborane-1,2-diselenolato)iridium ([Cp*Ir{Se}_2C_2(B_{10}H_{10})]], 4): A solution of 3 (1 mmol) in Et2O (60 mL) was added to a solution of [{Cp*IrCl}_2]2] (0.40 g; 0.5 mmol) in THF (60 mL). The colour of the Et2O/THF solution changed gradually from red to dark green. After 24 h of stirring at ambient temperature, the solvents were evaporated under reduced pressure and the residue chromatographed on silica. Elution with CH2Cl2/hexane (5:1) gave a dark green zone which contained 0.57 g (91%) of 4. Dark green prismatic crystals were grown from CH2Cl2/hexane/THF solvent mixtures. — IR (CsI): $\tilde{v}=2586$ cm $^{-1}$, v(B $^{-}$ H). — EI MS (70 eV); m/z (%): 628 (100) [M $^{+}$], 484 (38) [M $^{+}$ — C2B10H12], 143 (100) [C2B10H11 $^{+}$].

(1,2-Dicarba-closo-dodecaborane-1,2-diselenolato)(pentamethyl-cyclopentadienyl)(trimethylphosphane)iridium ([Cp*Ir{Se₂C₂-(B₁₀H₁₀)}(PMe₃)], 5): Trimethylphosphane (0.10 g, 1.32 mmol) was added to the green solution of 4 (0.30 g; 0.48 mmol) in CH₂Cl₂

Table 1. NMR-spectroscopic data[a] of 4 and 5

	$[Cp*Ir(Se_2C_2B_{10}H_{10})]$ (4)	$[Cp*Ir(Se_2C_2B_{10}H_{10})(PMe_3)]$ (5)
δ ¹ H δ ¹¹ B ^[b] δ ¹³ C δ ³¹ P δ ⁷⁷ Se	1.83 s Cp* -6.0, -7.1, -7.5, -8.4 [ratio 2:4:2:2] 10.6, 90.7 Cp*; 72.8 C ₂ B ₁₀ H ₁₀ -855.5	1.80 (2.1) d Cp*, 1.71 (10.5) d Me ₃ P -2.4, -4.2, -6.2, -8.0/-8.4, -10.7 [ratio 1:1:2:4:2] 9.4 (1.1), 97.0 (3.2) Cp*; 66.1 (3.5) C ₂ B ₁₀ H ₁₀ ;17.5 (43.3) Me ₃ P -29.3 363.4 (38.0) ^[c]

[[]a] Measured from diluted solutions in CDCl₃ at 20 \pm 1°C; coupling constants $J(^{31}P,X)$ (X = ^{1}H , ^{13}C , ^{77}Se), \pm 0.5 Hz, are given in parentheses. – [b] The number of boron atoms corresponding to the signals is given in square brackets. – [c] The δ⁷⁷Se value depends only slightly on the nature of L in $[Cp*Ir(Se_2C_2B_{10}H_{10})(L)]$, e.g. 342.7 ($\check{L}=CO)$, 360.0 ($\check{L}=CNtBu$).

(60 mL). The colour turned yellow immediately. The solvent was evaporated, the residue washed with hexane and recrystallized from CH₂Cl₂/hexane mixtures to give 0.31 g (93%) of orange-yellow crystals of 5. – IR (CsI): $\tilde{\nu}=2580$ cm $^{-1},$ ν (B–H). – EI MS (70 eV); *m/z* (%): 620 (43) [M⁺ – PMe₃], 549 (100) [M⁺ – PMe₃Se].

X-ray Crystal Structure Analyses of 4 and 5:[12] The intensity data of both compounds were collected with a Siemens P4 diffractometer using Mo- K_{α} radiation ($\lambda = 71.073$ pm, graphitemonochromated). The stability of the primary beam was controlled by monitoring three check reflections every 100 reflections.

4: $C_{12}H_{25}B_{10}IrSe_2$; $M_r = 627.6$; $\rho = 1.954$ g cm⁻³; black prism of the dimensions $0.12 \times 0.15 \times 0.20$ mm, monoclinic space group $P2_1/c$, with lattice parameters a = 1478.30(17), b = 1105.57(13), c = 1483.0(2) pm, $\beta = 117.990(9)^{\circ}$ and Z = 4; unit cell volume $V = 2140.3(5) \cdot 10^6 \text{ pm}^3$, absorption coefficient $\mu = 9.633 \text{ mm}^{-1}$. Data collection: Intensity data of 5977 reflections in the range 3° $\leq 2\vartheta \leq 55^{\circ}$ have been measured in the ω -scan mode (measuring temperature 296 K); 4868 ($R_{\text{int}} = 0.033$) reflections were unique and assigned to be observed; the data were Lorentz-, polarization-, and absorption-corrected (y-scans, min./max. transmission 0.2796/ 0.4392). Structure solution and refinement: Direct methods (Siemens SHELXTL PLUS v5.01); refinement (against F_0^2) with 222 parameters converged at R1 = 0.0412 and wR2 = 0.0961 [$I \ge$ $2\sigma(I)$]; max./min. residual electron density was 1.09/ $-1.34\ 10^{-6}$ e

5: $C_{15}H_{34}B_{10}PIrSe_2$ (CH₂Cl₂); $M_r = 703.6$; $\rho = 1.729$ g cm⁻³; orange prism with dimensions $0.20 \times 0.15 \times 0.12$ mm, monoclinic space group C2/c with the lattice parameters a = 24.886(5), b =17.636(4), c = 14.734(3) pm, $\beta = 123.27(3)^{\circ}$, and Z = 8, V = $5407(2)\ 10^6\ pm^3$, absorption coefficient $\mu=7.693\ mm^{-1}$. Data collection: Intensity data of 7222 reflections in the range $3^{\circ} \le 2 \vartheta \le$ 55° have been measured in the ω -scan mode, 6144 reflections were unique ($R_{\rm int} = 0.03$) and 5482 were assigned to be observed [$F_{\rm o}$ $\geq 2\sigma(F_o)$]; the data were corrected for Lorentz, polarization, and absorption effects (ψ-scans, min./max. transmission 0.4145/0.9647). Structure solution and refinement: Direct methods (Siemens SHELXTL PLUS v4.2), refinement (against F_0) with 277 parameters converged at $R = 0.0383/wR = 0.0325 [w^{-1} = \sigma^2(F_0)]$; max./ min. residual electron density was $1.22/-2.03 \cdot 10^6 \text{ e} \cdot \text{pm}^{-3}$.

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. G.-X. J. thanks the Max-Planck-Gesellschaft for a fellowship in the German-Chinese Exchange Program (1998).

[2] G.-X. Jin, M. Herberhold, A. L. Rheingold, New. J. Chem. **1998**, 22, 1035-1036.

[3] J. D. McKinney, H. Chen, T. A. Hamor, K. Paxton, C. J. Jones, J. Chem. Soc., Dalton Trans. 1998, 2163-2168.

[4] H. D. Smith, Jr., M. A. Robinson, S. Papetti, Inorg. Chem. 1967, 6.1014 - 1018

 [5] K. Base, M. W. Grinstaff, *Inorg. Chem.* 1998, 37, 1432–1433.
 [6] [6a] O. Crespo, M. C. Gimeno, P. G. Jones, B. Ahrens, A. Laguna, *Inorg. Chem.* 1997, 36, 495–500. – [6b] O. Crespo, M. C. Gimeno, D. G. Jones, A. Laguna, J. Organomet. Chem. 1997,

547, 89–95.

[7] [7a] A. R. Siedle, *Annu. Rep. NMR Spectrosc.* **1988**, 20, 205–314. – [7b] F. Teixidor, R. W. Rudolph, *J. Organomet. Chem.* **1983**, *241*, 301–312.

[8] [8a] I. Johannsen, H. Eggert, J. Am. Chem. Soc. 1984, 106, 1240–1243. – [8b] H. Poleschner, R. Radeglia, H. Meyer, Org. Magn. Reson. 1984, 22, 480–485. – [8c] H. Poleschner, R. Radeglia, H. Start, R. Ra glia, J. Fuchs, *J. Organomet. Chem.* **1992**, 427, 213–230. – [8d] B. Olk, R.-M. Olk, *Z. Anorg. Allg. Chem.* **1991**, 600, 89–93. –

B. Olk, R.-M. Olk, Z. Anorg. Aug. Chem. 1991, 000, 69–93. – ^[8e] R. A. Fischer, H.-J. Kneuper, W. A. Herrmann, J. Organomet. Chem. 1987, 330, 365–376. ^[9] Pal T. Klapötke, Spectrochim. Acta 1988, 44A, 461–462. – ^[9b] T. M. Klapötke, M. Broschag, Compilation of Reported ⁷⁷Se NMR Chemical Shifts, Wiley, Chichester, 1996. ^[10] C. White, A. Yates, P. M. Maitlis, Inorg. Synth. 1992, 29,

[11] K. Isobe, P. M. Bailey, P. M. Maitlis, J. Chem. Soc., Dalton Trans. 1981, 2003-2008.

[12] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-112292 (5) and -112293 (4). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk]

Received December 10, 1998 [I98423]

^[1] U. T. Mueller-Westerhoff, B. Vance, "Dithiolenes and Related Species" in Comprehensive Coordination Chemistry (Eds. R. D. Gillard, J. A. McCleverty, G. Wilkinson), Pergamon, Oxford, **1987**, vol. 2, ch. 16.5, p. 595–631.